Bac 2013 Métropole

On dispose des informations suivantes: les points $A$, $B$, $C$ ont pour coordonnées respectives $(1;0)$, $(1;2)$, $(0;2)$; la courbe $\mathscr{C}$ passe par le point $B$ et la droite $(BC)$ est tangente à $\mathscr{C}$ en $B$; il existe deux réels positifs $a$ et $b$ tels que pour tout réel strictement positif $x$, $$f(x) = \dfrac{a + b\ln x}{x}. $$ a. En utilisant le graphique, donner les valeurs de $f(1)$ et $f'(1)$. b. Vérifier que pour tout réel strictement positif $x$, $f'(x) = \dfrac{(b – a) – b \ln x}{x^2}$. c. En déduire les réels $a$ et $b$. a. Justifier que pour tout réel $x$ appartenant à l'intervalle $]0;+\infty[$, $f'(x)$ a le même signe que $- \ln x$. Annonce Grand Lyon 2022-6830 - La Métropole de Lyon. b. Déterminer les limites de $f$ en 0 et en $+ \infty$. On pourra remarquer que pour tout réel $x$ strictement positif, $f(x) = \dfrac{2}{x} + 2\dfrac{\ln x}{x}$. c. En déduire le tableau de variations de la fonction $f$. a. Démontrer que l'équation $f(x) = 1$ admet une unique solution $\alpha$ sur l'intervalle $]0;1]$. b. Par un raisonnement analogue, on démontre qu'il existe un unique réel $\beta$ de l'intervalle $]1;+ \infty[$ tel que $f(\beta) = 1$.

Bac 2013 Métropole 15

Le but de cette question est de démontrer que la courbe $\mathscr{C}$ partage le rectangle $OABC$ en deux domaines d'aires égales. a. Justifier que cela revient à démontrer que $\displaystyle\int_{\frac{1}{\e}}^1 f(x)\mathrm{d}x = 1$. b. En remarquant que l'expression de $f(x)$ peut s'écrire $\dfrac{2}{x} + 2 \times \dfrac{1}{x} \times \ln x$, terminer la démonstration. Exercice 3 – 4 points Pour chacune des quatre propositions suivantes, indiquer si elle est vraie ou fausse et justifier la réponse choisie. Il est attribué un point par réponse exacte correctement justifiée. Une réponse non justifiée n'est pas prise en compte. Une absence de réponse n'est pas pénalisée. Bac 2013 métropole signent une convention. Proposition 1: Dans le plan muni d'un repère orthonormé, l'ensemble des points $M$ dont l'affixe $z$ vérifie l'égalité $|z – \ic| = |z + 1|$ est une droite. Proposition 2: Le nombre complexe $\left(1 + \ic\sqrt{3}\right)^4$ est un nombre réel. Soit $ABCDEFGH$ un cube. Proposition 3: Les droites $(EC)$ et $(BG)$ sont orthogonales.

Bac 2013 Métropole 2016

Vos aptitudes et qualités - aptitude à remettre en cause sa pratique professionnelle, - capacité d'adaptation au changement, - rigueur, - accueil et écoute active; capacité à instaurer une relation de confiance, - capacité d'empathie, de bienveillance et de congruence, - capacité de distanciation, - capacité d'analyse, d'évaluation et de synthèse.

Bac 2013 Métropole Signent Une Convention

Exercice 4 5 points Candidats n'ayant pas suivi l'enseignement de spécialité Soit la suite numérique ( u n) \left(u_{n}\right) définie sur N \mathbb{N} par u 0 = 2 u_{0}=2 et pour tout entier naturel n n, u n + 1 = 2 3 u n + 1 3 n + 1. u_{n+1}=\frac{2}{3}u_{n}+\frac{1}{3}n+1. Calculer u 1, u 2, u 3 u_{1}, u_{2}, u_{3} et u 4 u_{4}. On pourra en donner des valeurs approchées à 1 0 − 2 10^{ - 2} près. Formuler une conjecture sur le sens de variation de cette suite. Démontrer que pour tout entier naturel n n, u n ⩽ n + 3. u_{n} \leqslant n+3. u n + 1 − u n = 1 3 ( n + 3 − u n). u_{n+1} - u_{n}=\frac{1}{3} \left(n+3 - u_{n}\right). En déduire une validation de la conjecture précédente. Suites - Bac S Métropole 2013 - Maths-cours.fr. On désigne par ( v n) \left(v_{n}\right) la suite définie sur N \mathbb{N} par v n = u n − n v_{n}=u_{n} - n. Démontrer que la suite ( v n) \left(v_{n}\right) est une suite géométrique de raison 2 3 \frac{2}{3}. En déduire que pour tout entier naturel n n, u n = 2 ( 2 3) n + n u_{n}=2\left(\frac{2}{3}\right)^{n}+n Déterminer la limite de la suite ( u n) \left(u_{n}\right).

Pour tout entier naturel $n$, on note $v_{n}$ le nombre d'habitants de cette région qui résident en ville au $1^{\text{er}}$ janvier de l'année $(2013 + n)$ et $c_{n}$ le nombre de ceux qui habitent à la campagne à la même date. Pour tout entier naturel $n$, exprimer $v_{n+1}$ et $c_{n+1}$ en fonction de $v_{n}$ et $c_{n}$. Soit la matrice $A = \begin{pmatrix}0, 95&0, 01\\0, 05& 0, 99\end{pmatrix}$. On pose $X = \begin{pmatrix}a\\b\end{pmatrix}$ où $a, b$ sont deux réels fixés et $Y = AX$. Déterminer, en fonction de $a$ et $b$, les réels $c$ et $d$ tels que $Y = \begin{pmatrix}c\\d\end{pmatrix}$. Bac S 2013 Maths : Sujet et corrigé de Maths, Métropole, juin 2013. Les résultats précédents permettent d'écrire que pour tout entier naturel $n$, $X_{n+1} = AX_{n}$ où $X_{n} = \begin{pmatrix}v_{n}\\c_{n}\end{pmatrix}$. On peut donc en déduire que pour tout entier naturel $n$, $X_{n} = A^n X_{0}$. Soient les matrices $P = \begin{pmatrix}1&- 1\\5&1\end{pmatrix}$ et $Q = \begin{pmatrix}1&1\\- 5&1\end{pmatrix}$. a. Calculer $PQ$ et $QP$. En déduire la matrice $P^{-1}$ en fonction de $Q$.